Preview

Theoretical and Applied Law

Advanced search

Artificial Intelligence and Inequality: A Legal Aspect

https://doi.org/10.22394/3034-2813-2024-4-56-67

EDN: YLOUUO

Abstract

The purpose of this article is to analyze the impact of artificial intelligence (hereinafter also referred to as AI) on social inequality. It is evident that AI not only brings about advantages but also serves as a means of infringing upon human rights, exacerbating social stratification at both the level of individual societies and on a global scale. Through the application of formal legal and comparative legal methodologies, it becomes apparent that the current practices of utilizing AI in various legal domains often fall short of achieving the intended objectives, sometimes even serving as a catalyst for discrimination and the perpetuation of social inequality. The paper underscores the active engagement of scholars and practitioners in addressing social inequality and other challenges associated with AI through the lens of AI ethics. The concept of AI ethics is explored, along with a critical analysis of ethical frameworks adopted by several technology companies operating in the field of artificial intelligence. It has been demonstrated that the primary cause of the emergence of social disparity in the realm of AI is not a dearth of ethical tenets in AI-driven algorithms, but rather a lack of adequate formalization of these ethical principles themselves into machine-readable language. It has been shown that the legal regulations in this domain, typically, are advisory in nature and emanate from corporations rather than from state institutions.

About the Authors

A. I. Rybin
National Research University Higher School of Economics
Russian Federation

Aleksandr I. Rybin, postgraduate student of the Department of Theory of Law and Comparative of the Faculty of Law,

Moscow.



E. O. Chashhukhin
National Research University Higher School of Economics
Russian Federation

Egor O. Chashchukhin, postgraduate student of the Department of Theory of Law and Comparative of the Faculty of Law,

Moscow.



References

1. Апостолова Н. Н. Ответственность за вред, причиненный искусственным интеллектом // Северо-Кавказский юридический вестник. 2021. № 1. С. 112–119. DOI: 10.22394/2074-7306-2021-1-1-112119 (Apostolova, N. N. (2021) Liability for damage caused by Artificial Intelligence. North Caucasus Legal Vestnik. Pp. 112–119.)

2. Виноградов В. А., Ларичев А. А. Индекс этичности права как прикладной инструмент оценки соотношения права и морали // Право. Журнал Высшей школы экономики. 2022. № 5. С. 4–23. (Vinogradov, V., Larichev, A. (2022) The Index of Ethicality of the Law as an applied tool for assessing the correlation between law and morality. Law Journal of the Higher School of Economics, no. 5, pp. 4–23. https://doi.org/10.17323/2072-8166.2022.5.4.23)

3. Конев С. И. Этико-правовые проблемы регулирования искусственного интеллекта и робототехники в отечественном и зарубежном праве / С. И. Конев, Б. А. Цокова // Образование. Наука. Научные кадры. 2020. № 4. С. 68–73. DOI: 10.24411/2073-3305-2020-10202. EDN: FJBTLD (Konev, S. I., Tsokova B. A. (2020) Ethical and legal problems of regulating Artificial Intelligence and robotics in domestic and foreign law. Education. Science. Scientific personnel, no. 4, pp. 68–73.) DOI: 10.24411/2073-33052020-10202.

4. Маклюэн Г. M. Понимание медиа: внешние расширения человека / Пер. с англ. В. Николаева. М., Жуковский: КАНОН-пресс-Ц, Кучково поле, 2003. 464 с. (McLuhan, M. (1994) Understanding Media: The Extensions of Man. 389 p.)

5. Маркс К. Капитал. Т. 1. М.: Государственное издательство политической литературы, 1952. 794 с.

6. Маркс К. Экономическо-философские рукописи 1844 г. // К. Маркс, Ф. Энгельс. Собр. соч. Т. 42. М.: Политиздат, 1974. С. 41–174. (Marx, K., Engels, F. (2023) Economic and Philosophic Manuscripts of 1844. Wilder Publications; Edition Unstated. 147 p.)

7. Шталь Б. К. [и др.] Этика искусственного интеллекта: кейсы и варианты решения этических проблем / Б. К. Шталь, Д. Шредер, Р. Родригес; пер. с англ. И. Кушнаревой; под науч. ред. А. Павлова; Нац. исслед. ун-т «Высшая школа экономики». М.: Изд. дом Высшей школы экономики, 2024. 200 с. (Stahl, B. C., Schroeder, D., Rodrigues, R. (2023) Ethics of Artificial Intelligence. Case Studies and Options for Addressing Ethical Challenges. Springer.) DOI: 10.17323/978-5-7598-2981-2.

8. Юницкий А. Э. Искусственный интеллект и отчуждение человека от разума: причины, механизмы, последствия / А. Э. Юницкий, Е. О. Петров // Безракетная индустриализация ближнего космоса: проблемы, идеи, проекты: материалы V международной научно-технической конференции, Марьина Горка, 23–24 сентября 2022 г. Минск: ГП «СтройМедиаПроект», 2023. С. 270–281. EDN: MCIVZU. (Unitsky, A., Petrov, E. (2023) Artificial Intelligence and Human Alienation from Mind: Causes, Mechanisms, Consequences. Collection of Articles of the V International Scientific and Tachnical Conference “Non-Rocket Near Space Industrialization: Problems, Ideas, Projects”. Pp. 270–281)

9. Bentley, S. V., Naughtin, C. K., McGrath, M. J. [et al.] (2024) The digital divide in action: how experiences of digital technology shape future relationships with artificial intelligence. AI and Ethics, no. 3, pp. 1–15. https://doi.org/10.1007/s43681-024-00452-3

10. Boden, M. [et al.] (2017) Principles of robotics: Regulating robots in the real world. Connection Sci, vol. 29 (2), pp. 124–129. https://doi.org/10.1080/09540091.2016.1271400

11. Cavoukian, A. (2017) Global privacy and security, by design: turning the “privacy vs. security” paradigm on its head. Health Technology, vol. 7, pp. 329–333. https://doi.org/10.1007/s12553-017-0207-1

12. Citrome, L. (2024) Artificial Intelligence and the Potential for Garbage In, Garbage Out. Current Medical Research and Opinion, no. 40 (1), pp. 1–2. DOI: 10.1080/03007995.2023.2286785

13. Farahani, M., Ghasemi, G. (2024) Artificial Intelligence and Inequality: Challenges and Opportunities. Qeios. https://doi.org/10.32388/7HWUZ2

14. Gramsci, A. (1974) Selections from the prison notebooks of Antonio Gramsci. International Publishers, Political Science. 483 p.

15. Hung, T. W., Yen, C. P. (2023) Predictive policing and algorithmic fairness. Synthese, pp. 201–206. https://doi.org/10.1007/s11229-023-04189-0

16. Mahadi, N., Bakari, A. H. A., Baskaran, S., Maideen, M. H. (2022) How The Pandemic Has Disrupted and Changed Hiring. International Journal of Academic Research in Business and Social Sciences, no. 12 (10), pp. 1331–1340. DOI: 10.6007/IJARBSS/v12-i10/14825

17. Mugari, I., Obioha, E. (2021) Predictive Policing and Crime Control in the United States of America and Europe: Trends in a Decade of Research and the Future of Predictive Policing. Social Sciences, no. 10 (234), pp. 1–14. DOI: 10.3390/socsci10060234

18. Murphy, R., Woods, D. (2009) Beyond Asimov: The Three Laws of Responsible Robotics. Intelligent Systems, IEEE, no. 24 (4), pp. 14–20. DOI: 10.1109/MIS.2009.69

19. Radclyffe, Ch., Ribeiro, M., Wortham, R. (2023) The assessment list for trustworthy artificial intelligence: A review and recommendations. Frontiers in Artificial Intelligence, pp. 1–10. https://doi.org/10.3389/frai.2023.1020592

20. Taylor, I. (2023) Justice by Algorithm: The Limits of AI in Criminal Sentencing. Criminal Justice Ethics, no. 42 (3), pp. 193–213. https://doi.org/10.1080/0731129X.2023.2275967

21. Villasenor, J., Foggo, V. (2020) Artificial Intelligence, Due Process, and Criminal Sentencing. Michigan State Law Review, no. 295, pp. 295–354. DOI: 10.17613/48wf-jn82

22. Wallach, W., Allen, C. (2009) Moral Machines: Teaching Robots Right from Wrong. Oxford Univ. press. 288 p.

23. Winfield, A., Michael, K., Pitt, J., Evers, V. (2019) Machine Ethics: The Design and Governance of Ethical AI and Autonomous Systems. Proceedings of the IEEE, no. 107 (3), pp. 509–517. DOI: 10.1109/JPROC.2019.2900622

24. Xinyu, C. (2023) Gender Bias in Hiring: An Analysis of the Impact of Amazon’s Recruiting Algorithm. Advances in Economics, Management and Political Sciences, no. 23, pp. 134–140. https://doi.org/10.54254/2754-1169/23/20230367

25. Zou, J., Schiebinger, L. (2018) AI can be sexist and racist — it’s time to make it fair. Nature, no. 559, pp. 324–326. DOI: 10.54254/2754-1169/23/20230367


Review

For citations:


Rybin A.I., Chashhukhin E.O. Artificial Intelligence and Inequality: A Legal Aspect. Theoretical and Applied Law. 2024;(4):56-67. (In Russ.) https://doi.org/10.22394/3034-2813-2024-4-56-67. EDN: YLOUUO

Views: 501


ISSN 3034-2813 (Online)